Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm.

نویسندگان

  • Anthony K L Leung
  • Sejal Vyas
  • Jennifer E Rood
  • Arjun Bhutkar
  • Phillip A Sharp
  • Paul Chang
چکیده

Poly(ADP-ribose) is a major regulatory macromolecule in the nucleus, where it regulates transcription, chromosome structure, and DNA damage repair. Functions in the interphase cytoplasm are less understood. Here, we identify a requirement for poly(ADP-ribose) in the assembly of cytoplasmic stress granules, which accumulate RNA-binding proteins that regulate the translation and stability of mRNAs upon stress. We show that poly(ADP-ribose), six specific poly(ADP-ribose) polymerases, and two poly(ADP-ribose) glycohydrolase isoforms are stress granule components. A subset of stress granule proteins, including microRNA-binding Argonaute family members Ago1-4, are modified by poly(ADP-ribose), and such modification increases upon stress, a condition when both microRNA-mediated translational repression and microRNA-directed mRNA cleavage are relieved. Similar relief of repression is also observed upon overexpression of specific poly(ADP-ribose) polymerases or, conversely, upon knockdown of glycohydrolase. We conclude that poly(ADP-ribose) is a key regulator of posttranscriptional gene expression in the cytoplasm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein.

The mammalian poly(ADP-ribose) polymerase (PARP) family includes ADP-ribosyltransferases with diphtheria toxin homology (ARTD). Most members have mono-ADP-ribosyltransferase activity. PARP13/ARTD13, also called zinc finger antiviral protein, has roles in viral immunity and microRNA-mediated stress responses. PARP13 features a divergent PARP homology domain missing a PARP consensus sequence moti...

متن کامل

Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen tr...

متن کامل

MicroRNA-489 Induction by Hypoxia-Inducible Factor-1 Protects against Ischemic Kidney Injury.

MicroRNAs have been implicated in ischemic AKI. However, the specific microRNA species that regulates ischemic kidney injury remains unidentified. Our previous microarray analysis revealed microRNA-489 induction in kidneys of mice subjected to renal ischemia-reperfusion. In this study, we verified the induction of microRNA-489 during ischemic AKI in mice and further examined the underlying mech...

متن کامل

Regulation of poly(ADP-Ribose) polymerase 1 functions by post-translational modifications.

The poly(ADP-ribose) polymerases (PARPs) catalyze poly(ADP-ribosyl)ation, a post-translational modification of proteins. This  consists of the attachment of mono- or poly-adenosine diphosphate (ADP)-ribose units from nicotinamide adenine dinucleotide (NAD+) to specific polar residues of target proteins. PARP1 is the most abundant and best-characterized member of the family of PARP enzymes. PARP...

متن کامل

Poly(ADP-ribosyl)ation in plants.

Poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolases (PARGs) are the main enzymes responsible for the post-translational modification known as poly(ADP-ribosyl)ation. These enzymes play important roles in genotoxic stress tolerance and DNA repair, programmed cell death, transcription, and cell cycle control in animals. Similar impacts are being discovered in plants, as well...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cell

دوره 42 4  شماره 

صفحات  -

تاریخ انتشار 2011